

Synthesis and pharmacological studies of some phthalimidoxy substituted spiro-thiazolidinone derivatives of isatin

Dinesh Bhambi, Chirag Sharma, Shweta Sharma, Vijay Kumar Salvi & G L Talesara*

Synthetic Organic Chemistry Research Laboratory

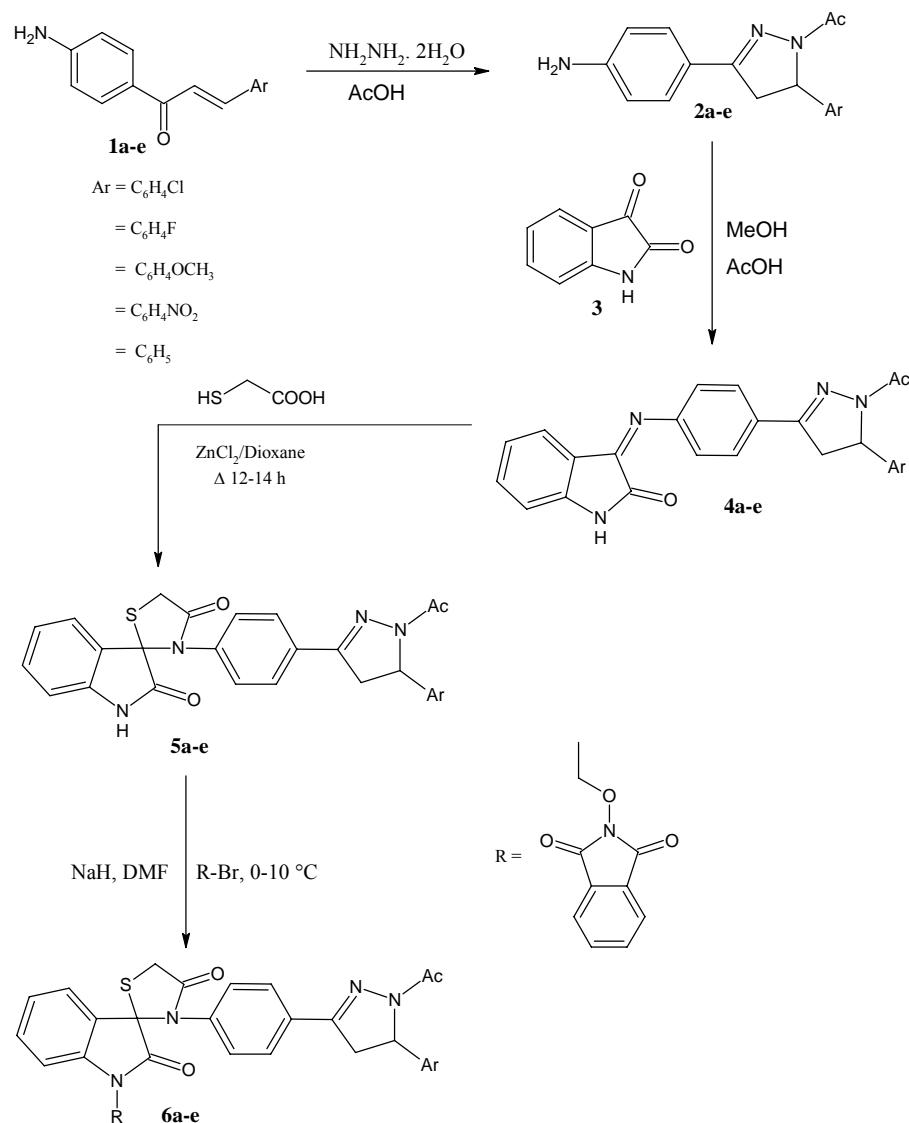
Department of Chemistry, M.L. Sukhadia University, Udaipur 313 001, India

E-mail: gtalesara@yahoo.com

Received 3 September 2008; accepted (revised) 31 March 2009

Novel spiro-isatin-thiazolidino-pyrazoline compounds containing alkoxyphthalimide moiety have been synthesized through a four step pathway starting from chalcone **1a-e**. Cyclization of these with hydrazine hydrate in absolute ethanol have yielded 1-acetyl-3-(4-aminophenyl)-5-(4-substituted phenyl)-2-pyrazoline **2a-e**. Acid catalyzed condensation of **2a-e** with isatin **3** has yielded 3-[4-(1-acetyl-5-(4-substituted phenyl)-2-pyrazoline-3-yl)phenylimino]indole-2-one **4a-e**. These Schiff bases on reaction with mercaptoacetic acid in presence of anhydrous $ZnCl_2$ gave their corresponding spiro-thiazolidinone derivatives **5a-e**. Subsequent treatment with bromoethoxyphthalimide yielded titled compounds 3'-(4-(1-acetyl-5-(4-substituted phenyl)-2-pyrazoline-3-yl)phenyl)-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-(1,3]thiazolidene]-2,4'-1H-dione **6a-e**.

Keywords: Pyrazoline, isatin, spiro-thiazolidinone, bromoethoxyphthalimide


Pyrazoline derivatives have been studied extensively because of their ready accessibility, diverse chemical reactivity and extensive biological activity. The pharmaceutical importance of various substituted pyrazolines lies in the fact that these can be effectively utilized as antibacterial¹, antitubercular² and insecticidal agents³. Some of these compounds have manifested substantial antidiabetic⁴ and analgesic properties⁵. The chemical versatility of isatin (2,3-indolinone) derivatives has led to their extensive use as synthons for the preparation of many biologically active compounds^{6,7}. Isatin is an endogenous compound identified in humans that possesses wide range of biological activities. Isatin has anxiogenic⁸ activity and acts as a potent antagonist on atrial natriuretic peptide receptors *in vitro*⁹. Isatin-derived compounds possess a wide spectrum of medicinal properties and have been studied for activity against tuberculosis¹⁰, trypanosomiasis¹¹ and as anticonvulsants¹². Spiro derivatives of isatin have attracted the attention of chemists in view of their analgesic¹³ and antiphlogistic¹⁴ activities and their use as a blood platelet aggregators¹⁵. Moreover, thiazolidinones have a broad spectrum of pharmacological properties *viz.* anti-HIV¹⁶, antifungal¹⁷, antipsychotic¹⁸, anticonvulsant¹⁹

etc. Several derivatives of alkoxyphthalimide have been already synthesized^{20,21} and reported to demonstrate a wide range of pharmacological activities like antimalarial²², antiepileptic²³, anticonvulsant²⁴ etc.

In view of above mentioned facts and in connection with earlier work on the synthesis of ethoxyphthalimide derivatives of heterocycles, it appeared expedient to synthesize 3'-(4-(1-acetyl-5-(4-substituted phenyl)-2-pyrazoline-3-yl)phenyl)-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-(1,3]thiazolidene]-2,4'-1H-dione **6a-e** *via* a series of reactions. (**Scheme I, Table I**).

Result and Discussion

An efficient and convenient synthesis of ethoxyphthalimide derivative of some pyrazolo-spiro-indole-thiazolidinones through a multistep process had been carried out. For this purpose, chalcone **1a-e** was allowed to react with hydrazine hydrate to give 1-acetyl-3-(4-aminophenyl)-5-aryl-2-pyrazoline **2a-e**. The appearance of C=N band at 1632 cm^{-1} and no absorption in the region 1678 cm^{-1} clearly indicated that $-CO-CH=CH-$ moiety of chalcone underwent cyclization to a pyrazoline ring in **2a-e**. The structure was further supported by its 1H NMR spectra which

Scheme I

exhibited three double doublets due to presence of two diastereotopic protons at C₄ and one single proton at C₅ which appeared in the region δ 3.01, 4.19 and 5.30 respectively. Appearance of a singlet at δ 3.43 due to methyl group of COCH₃, further confirmed the structure of **2a**. Acid catalyzed condensation of **2a-e** with isatin **3** was carried out to afford corresponding 3-[4-{1-acetyl-5-aryl-2-pyrazolin-3-yl}-phenylimino]-indol-2-one **4a-e**. The IR spectra of compounds **4a-e** were characterized by absence of absorption band at 3494-3333 cm⁻¹ which was present in its precursor. Compounds **4a-e** on refluxing with mercaptoacetic acid in DMF for 8-10 hr in the presence of catalytic amount of anhy. ZnCl₂ afforded 3'-{4-(1-acetyl-5-(4-substituted phenyl)-2-pyrazoline-3-yl)phenyl}-4'H-spiro[indole-3,2'-[1,3]thiazolidine]-2,4'-1H-dione **5a-e** was achieved. Two characteristic triplets of O-CH₂ and N-CH₂ at δ 4.33 and 2.93 respectively in ¹H NMR spectra, C-H stretching vibration band in IR spectra and molecular ion peak in mass spectra proved the structure.

spiro[indole-3,2'-[1,3]thiazolidine]-2,4'-1H-diones **5a-e**. Formation of compounds **5a-e** was confirmed by appearance of peak at 1710 cm⁻¹, which was due to >C=O group of thiazolidinone ring. Appearance of new singlet at δ 3.32 due to S-CH₂ group, also confirmed its formation. When bromoethoxyphthalimide was condensed with **5a-e** in NaH and DMF, formation of 3'-{4-(1-acetyl-5-(4-substitutedphenyl)-2-pyrazoline-3-yl)phenyl}-1-N-ethoxy-phthalimido-4'H-spiro[indole-3,2'-[1,3]thiazolidine]-2,4'-1H-dione **6a-e** was achieved. Two characteristic triplets of O-CH₂ and N-CH₂ at δ 4.33 and 2.93 respectively in ¹H NMR spectra, C-H stretching vibration band in IR spectra and molecular ion peak in mass spectra proved the structure.

Table I—Physical and analytical data of synthesized compounds

Compd	Mol. formula	Mol. Weight	Ar	m.p. (°C)	Yield (%)	Found/Calcd (%)	
						C	N
2a	C ₁₇ H ₁₆ ClN ₃ O	313	C ₆ H ₄ Cl	140	68	65.02 (65.07)	13.27 (13.39)
2b	C ₁₇ H ₁₆ FN ₃ O	297	C ₆ H ₄ F	172	72	68.58 (68.67)	14.11 (14.13)
2c	C ₁₈ H ₁₉ N ₃ O ₂	309	C ₆ H ₄ OCH ₃	164	69	69.81 (69.88)	13.55 (13.59)
2d	C ₁₇ H ₁₆ N ₃ O ₂	324	C ₆ H ₄ NO ₂	210	62	62.84 (62.95)	17.05 (17.28)
2e	C ₁₇ H ₁₇ N ₃ O	279	C ₆ H ₅	156	70	73.03 (73.10)	15.00 (15.05)
4a	C ₂₅ H ₁₉ ClN ₄ O ₂	442	C ₆ H ₄ Cl	186	66	67.72 (67.80)	12.60 (12.65)
4b	C ₂₅ H ₁₉ FN ₄ O ₂	426	C ₆ H ₄ F	190	69	70.32 (70.41)	13.09 (13.14)
4c	C ₂₆ H ₂₂ N ₄ O ₃	438	C ₆ H ₄ OCH ₃	202	71	71.16 (71.22)	12.75 (12.78)
4d	C ₂₅ H ₁₉ N ₅ O ₄	453	C ₆ H ₄ NO ₂	278	63	66.13 (66.22)	15.39 (15.45)
4e	C ₂₅ H ₂₀ N ₄ O ₂	408	C ₆ H ₅	204	68	73.45 (73.51)	13.69 (13.72)
5a	C ₂₇ H ₂₁ ClN ₄ O ₃ S	516	C ₆ H ₄ Cl	233	70	62.65 (62.73)	10.81 (10.84)
5b	C ₂₇ H ₂₁ FN ₄ O ₃ S	500	C ₆ H ₄ F	202	68	64.69 (64.79)	11.08 (11.20)
5c	C ₂₈ H ₂₄ N ₄ O ₄ S	512	C ₆ H ₄ OCH ₃	261	63	65.53 (65.61)	10.89 (10.93)
5d	C ₂₇ H ₂₁ N ₅ O ₅ S	527	C ₆ H ₄ NO ₂	321	60	61.39 (61.47)	13.23 (13.28)
5e	C ₂₇ H ₂₂ N ₄ O ₃ S	482	C ₆ H ₅	197	64	67.12 (67.20)	11.55 (11.61)
6a	C ₃₇ H ₂₈ ClN ₅ O ₆ S	705	C ₆ H ₄ Cl	123	64	62.77 (62.85)	9.88 (9.92)
6b	C ₃₇ H ₂₈ FN ₅ O ₆ S	689	C ₆ H ₄ F	132	67	64.81 (64.92)	10.03 (10.15)
6c	C ₃₈ H ₃₁ N ₅ O ₇ S	701	C ₆ H ₄ OCH ₃	141	57	65.66 (65.74)	9.91 (9.98)
6d	C ₃₇ H ₂₈ N ₆ O ₈ S	716	C ₆ H ₄ NO ₂	163	60	61.51 (61.59)	11.69 (11.73)
6e	C ₃₇ H ₂₉ N ₅ O ₆ S	671	C ₆ H ₅	113	66	67.27 (67.34)	10.38 (10.43)

Antimicrobial Activity

Five synthesized compounds **6a-e** were *in vitro* screened for their antibacterial and antifungal activity using 100 µg/mL concentrations in DMF by cup and

well method²⁵. The micro-organisms *Proteus mirabilis*, *Bacillus subtilis*, *Klebsiella pneumoniae*, *Escherichia coli* were used as antibacterials, *Candida albicans* and *Aspergillus fumigatus* were used as

fungal strains. The activity is presented as zone of inhibition in mm and compared with activity of controls C₁ and C₂ (for antibacterial activity C₁= ciprofloxacin, C₂= roxithromycin and for antifungal activity C₁= amphotericin and C₂= flucanazole) to give activity index value (**Table II**).

All the compounds showed poor activity against *K. pneumoniae* and *E. coli* where as moderate to strong activity was shown against *P. mirabilis* and *B. subtilis*. Activity index value against *P. mirabilis* and *B. subtilis* was more than one for majority of compounds. It was interesting to note that all the compounds showed stronger activity than the standard used against *Candida albicans* and *Aspergillus fumigatus*.

It was concluded from the activity study that compound **6b** was found to be the strongest amongst all synthesized compounds. Compounds under study showed more comprehensive fungus-inhibiting properties than that of the bacterial. Even two folds antifungal activity was observed for these compared to standard. As far as the relation between structure and activity are concerned the chloro, fluoro and nitro substituted compounds were found to have better activity than the others.

Experimental Section

Melting points were taken in open capillary tubes and are therefore uncorrected. Purity of the compounds was checked on silica gel G TLC plates of 2 mm thickness using *n*-hexane and ethylacetate as solvent system. The visualization of spot was carried out in an iodine chamber. The IR spectra were recorded on a Perkin-Elmer spectrometer. The ¹H NMR spectra were scanned on a Bruker DRX-300 MHz. spectrometer (300 MHz) in CDCl₃ using TMS as internal standard and chemical shifts are expressed in δ ppm. The mass spectra were recorded on a Jeol SX-102 (FAB) spectrometer. Phthalimidoxyethyl bromide²⁶ and 1-(4-aminophenyl)-3-(substituted phenyl)-prop-2-en-1-one²⁷ (chalcone) **1a-e** were synthesized by literature method. The physical and analytical data of synthesized compounds are presented in **Table I**.

Synthesis of 1-acetyl-3-(4-aminophenyl)-5-(4-chlorophenyl)-2-pyrazoline 2a: A mixture of chalcone **1a** (0.01 mole) and hydrazine hydrate (0.013 mole) in absolute ethanol (20 mL) in the presence of catalytic amount (3-4 drops) of gl. acetic acid was kept under reflux for 6-8 hr. The solution was concentrated by distillation under reduced pressure and after cooling solid obtained was filtered off, washed with water, dried and crystallized from ethanol.

Table II — Antimicrobial activity of the synthesized compounds **6a-e**

Compound	Antibacterial Activity				Antifungal Activity	
	<i>P. mirabilis</i>	<i>B. subtilis</i>	<i>K. pneumoniae</i>	<i>E. coli</i>	<i>C. albicans</i>	<i>A. fumigatus</i>
6a	13 (0.92) ^{C₁} (1.3) ^{C₂}	10 (0.90) ^{C₁} (1.66) ^{C₂}	5 (0.41) ^{C₁} (0.83) ^{C₂}	5 (0.41) ^{C₁} (0.50) ^{C₂}	12 (1.00) ^{C₁} (2.00) ^{C₂}	6 (1.00) ^{C₁} (2.00) ^{C₂}
	15 (1.07) ^{C₁} (1.50) ^{C₂}	11 (1.00) ^{C₁} (1.83) ^{C₂}	4 (0.33) ^{C₁} (0.66) ^{C₂}	7 (0.58) ^{C₁} (0.70) ^{C₂}	13 (1.08) ^{C₁} (2.16) ^{C₂}	8 (1.33) ^{C₁} (2.66) ^{C₂}
	9 (0.64) ^{C₁} (0.90) ^{C₂}	8 (0.72) ^{C₁} (1.33) ^{C₂}	3 (0.25) ^{C₁} (0.50) ^{C₂}	NA	9 (0.75) ^{C₁} (1.50) ^{C₂}	5 (0.83) ^{C₁} (1.66) ^{C₂}
6d	12 (0.85) ^{C₁} (1.20) ^{C₂}	10 (0.90) ^{C₁} (1.66) ^{C₂}	4 (0.33) ^{C₁} (0.66) ^{C₂}	5 (0.41) ^{C₁} (0.50) ^{C₂}	11 (0.91) ^{C₁} (1.83) ^{C₂}	7 (1.16) ^{C₁} (2.33) ^{C₂}
	10 (0.71) ^{C₁} (1.00) ^{C₂}	9 (0.81) ^{C₁} (1.50) ^{C₂}	NA	4 (0.33) ^{C₁} (0.40) ^{C₂}	7 (0.58) ^{C₁} (1.16) ^{C₂}	5 (0.83) ^{C₁} (1.66) ^{C₂}
C₁	14	11	12	12	12	6
C₂	10	6	6	10	6	3

Zone of inhibition (mm) (activity index)^{std.}

(Activity index) = Inhibition zone of compound/Inhibition zone of the standard drug.

For antibacterial activity: C₁ = ciprofloxacin, C₂ = roxithromycin

For antifungal activity: C₁ = amphotericin B, C₂ = flucanazole

NA = Nil Activity

IR (KBr, cm^{-1}): 3494, 3333 (N-H str.), 3012 (C-H str., Ar-H), 2832 (C-H str., CH_3), 1700 (C=O str.), 1632 (C=N str.), 776 (C-Cl str.); ^1H NMR (CDCl_3 , δ): 7.85-7.26 (m, 8H, Ar-H), 6.77 (s, 2H, NH_2), 5.51 (dd, 1H, CH-Ar, $J_1 = 6.4$, $J_2 = 12.7$ Hz), 4.40 (dd, 1H, CHbH, $J_1 = 16.5$, $J_2 = 12.7$ Hz), 3.43 (s, 3H, COCH_3), 3.25 (dd, 1H, CHHa, $J_1 = 16.5$, $J_2 = 6.4$ Hz).

Compounds **2b-e** were also synthesized by the similar method using appropriate reactants with required change in reflux time.

1-Acetyl-3-(4-aminophenyl)-5-(4-fluorophenyl)-2-pyrazoline 2b: IR (KBr, cm^{-1}): 3452, 3310 (N-H str.), 3080 (C-H str., Ar-H), 2836 (C-H str., CH_3), 1685 (C=O str.), 1615 (C=N str.), 1150 (C-F str.); ^1H NMR (CDCl_3 , δ): 7.83-7.25 (m, 8H, Ar-H), 6.73 (s, 2H, NH_2), 5.50 (dd, 1H, CHAr, $J_1 = 6.4$, $J_2 = 12.7$ Hz), 4.42 (dd, 1H, CHbH, $J_1 = 16.5$, $J_2 = 12.7$ Hz), 3.46 (s, 3H, COCH_3), 3.28 (dd, 1H, CHHa, $J_1 = 16.5$, $J_2 = 6.4$ Hz).

1-Acetyl-3-(4-aminophenyl)-5-(4-methoxyphenyl)-2-pyrazoline 2c: IR (KBr, cm^{-1}): 3458, 3326 (N-H str.), 3024 (C-H str., Ar-H), 2839 (C-H str., CH_3), 1690 (C=O str.), 1617 (C=N str.), 1052 (C-O str.); ^1H NMR (CDCl_3 , δ): 7.87-7.31 (m, 8H, Ar-H), 6.74 (s, 2H, NH_2), 5.56 (dd, 1H, CH-Ar, $J_1 = 6.4$, $J_2 = 12.7$ Hz), 4.44 (dd, 1H, CHbH, $J_1 = 16.5$, $J_2 = 12.7$ Hz), 3.40 (s, 3H, COCH_3), 3.21 (dd, 1H, CHHa, $J_1 = 16.5$, $J_2 = 6.4$ Hz).

1-Acetyl-3-(4-aminophenyl)-5-(4-nitrophenyl)-2-pyrazoline 2d: IR (KBr, cm^{-1}): 3446, 3321 (N-H str.), 3011 (C-H str., Ar-H), 2830 (C-H str., CH_3), 1694 (C=O str.), 1630 (C=N str.), 1521, 1354 (NO_2 asymm. and symm. str.); ^1H NMR (CDCl_3 , δ): 7.97-7.30 (m, 8H, Ar-H), 6.75 (s, 2H, NH_2), 5.51 (dd, 1H, CH-Ar, $J_1 = 6.4$, $J_2 = 12.7$ Hz), 4.46 (dd, 1H, CHbH, $J_1 = 16.5$, $J_2 = 12.7$ Hz), 3.42 (s, 3H, COCH_3), 3.23 (dd, 1H, CHHa, $J_1 = 16.5$, $J_2 = 6.4$ Hz).

1-Acetyl-3-(4-aminophenyl)-5-phenyl-2-pyrazoline 2e: IR (KBr, cm^{-1}): 3442, 3317 (N-H str.), 3013 (C-H str., Ar-H), 2824 (C-H str., CH_3), 1696 (C=O str.), 1638 (C=N str.); ^1H NMR (CDCl_3 , δ): 7.97-7.28 (m, 9H, Ar-H), 6.70 (s, 2H, NH_2), 5.50 (dd, 1H, CH-Ar, $J_1 = 6.4$, $J_2 = 12.7$ Hz), 4.44 (dd, 1H, CHbH, $J_1 = 16.5$, $J_2 = 12.7$ Hz), 3.40 (s, 3H, COCH_3), 3.22 (dd, 1H, CHHa, $J_1 = 16.5$, $J_2 = 6.4$ Hz).

Synthesis of 3-[4-{1-acetyl-5-(chlorophenyl)-2-pyrazolin-3-yl}phenylimino]indol-2-one 4a: An equimolar mixture of **2a** and isatin **3** was refluxed in methanol (40 mL) in the presence of catalytic amount (3-4 drops) of gl. acetic acid for 3 hr and allowed to

cool at R T. The Schiff base thus obtained was filtered and recrystallized from methanol.

IR (KBr, cm^{-1}): 3217 (N-H str.), 3017 (C-H str., Ar-H), 2875 (C-H str., CH_3), 1700 (C=O str.), 1645 (C=N str.), 745 (C-Cl str.); ^1H NMR (CDCl_3 , δ): 12.17 (s, 1H, NH), 7.10-6.70 (m, 12H, Ar-H), 5.32 (dd, 1H, CHAr, $J_1 = 6.8$, $J_2 = 12.9$ Hz), 4.10 (dd, 1H, CHbH, $J_1 = 16.3$, $J_2 = 12.9$ Hz), 3.34 (s, 3H, COCH_3), 3.20 (dd, 1H, CHHa, $J_1 = 16.3$, $J_2 = 6.8$ Hz).

Compounds **4b-e** were also synthesized by the similar method using appropriate reactants and minor modification in reaction conditions.

3-[4-{1-Acetyl-5-(fluorophenyl)-2-pyrazolin-3-yl}phenylimino]indol-2-one 4b: IR (KBr, cm^{-1}): 3232 (N-H str.), 3031 (C-H str., Ar-H), 2870 (C-H str., CH_3), 1708 (C=O str.), 1637 (C=N str.), 1175 (C-F str.); ^1H NMR (CDCl_3 , δ): 12.20 (s, 1H, NH), 7.43-6.82 (m, 12H, Ar-H), 5.30 (dd, 1H, CHAr, $J_1 = 6.8$, $J_2 = 12.9$ Hz), 4.17 (dd, 1H, CHbH, $J_1 = 16.3$, $J_2 = 12.9$ Hz), 3.40 (s, 3H, COCH_3), 3.23 (dd, 1H, CHHa, $J_1 = 16.3$, $J_2 = 6.8$ Hz).

3-[4-{1-Acetyl-5-(methoxyphenyl)-2-pyrazolin-3-yl}phenylimino]indol-2-one 4c: IR (KBr, cm^{-1}): 3223 (N-H str.), 3027 (C-H str., Ar-H), 2873 (C-H str., CH_3), 1698 (C=O str.), 1638 (C=N str.), 1090 (C-O str.); ^1H NMR (CDCl_3 , δ): 12.12 (s, 1H, NH), 7.43-6.90 (m, 12H, Ar-H), 5.27 (dd, 1H, CHAr, $J_1 = 6.8$, $J_2 = 12.9$ Hz), 4.11 (dd, 1H, CHbH, $J_1 = 16.3$, $J_2 = 12.9$ Hz), 3.89 (s, 3H, OCH_3), 3.30 (s, 3H, COCH_3), 3.18 (dd, 1H, CHHa, $J_1 = 16.3$, $J_2 = 6.8$ Hz).

3-[4-{1-Acetyl-5-(nitrophenyl)-2-pyrazolin-3-yl}phenylimino]indol-2-one 4d: IR (KBr, cm^{-1}): 3242 (N-H str.), 3022 (C-H str., Ar-H), 2870 (C-H str., CH_3), 1696 (C=O str.), 1631 (C=N str.), 1517, 1345 (NO_2 asymm. and symm. str.); ^1H NMR (CDCl_3 , δ): 12.18 (s, 1H, NH), 7.77-6.76 (m, 12H, Ar-H), 5.28 (dd, 1H, CHAr, $J_1 = 6.8$, $J_2 = 12.9$ Hz), 4.14 (dd, 1H, CHbH, $J_1 = 16.3$, $J_2 = 12.9$ Hz), 3.46 (s, 3H, COCH_3), 3.21 (dd, 1H, CHHa, $J_1 = 16.3$, $J_2 = 6.8$ Hz).

3-[4-{1-Acetyl-5-phenyl-2-pyrazolin-3-yl}phenylimino]indol-2-one 4e: IR (KBr, cm^{-1}): 3229 (N-H str.), 3024 (C-H str., Ar-H), 2871 (C-H str., CH_3), 1702 (C=O str.), 1633 (C=N str.); ^1H NMR (CDCl_3 , δ): 12.14 (s, 1H, NH), 7.73-6.69 (m, 13H, Ar-H), 5.30 (dd, 1H, CHAr, $J_1 = 6.8$, $J_2 = 12.9$ Hz), 4.10 (dd, 1H, CHbH, $J_1 = 16.3$, $J_2 = 12.9$ Hz), 3.38 (s, 3H, COCH_3), 3.27 (dd, 1H, CHHa, $J_1 = 16.3$, $J_2 = 6.8$ Hz).

Synthesis of 3'-[4-(1-acetyl-5-(4-chlorophenyl)-2-pyrazoline-3-yl)phenyl]-4'H-spiro[indole-3,2'-(1,3)-thiazolidene]-2,4'-1H-diones 5a: A well stirred

solution of **4a** (0.01 mole) in dry DMF containing pinch of anhydrous $ZnCl_2$ and thioglycolic acid (0.02 mole) was refluxed for 8 hr. Excess of solvent was distilled off and the residual reaction-mixture was cooled and poured into ice-cold water. The separated solid was filtered, washed and recrystallized from ethanol.

IR (KBr, cm^{-1}): 3310 (N-H str.), 3070 (C-H str., Ar-H), 2985 (C-H str., CH_3), 1705, 1680 (C=O str.), 1632 (C=N str.), 750 (C-Cl str.), 700 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 12.11 (s, 1H, isatin NH), 7.81-6.91 (m, 12H, Ar-H), 5.52 (dd, 1H, CH-Ar, J_1 = 5.7, J_2 = 11.3 Hz), 4.43 (dd, 1H, CHbH, J_1 = 17.8, J_2 = 11.3 Hz), 4.10 (s, 2H, CH_2), 3.64 (dd, 1H, CHHa, J_1 = 17.8, J_2 = 5.7 Hz), 3.11 (s, 3H, $COCH_3$).

Compounds **5b-e** were also synthesized by the similar method using appropriate reactants with required change in reflux time.

3'-{4-(1-Acetyl-5-(4-fluorophenyl)-2-pyrazoline-3-yl)phenyl}-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-diones 5b: IR (KBr, cm^{-1}): 3302 (N-H str.), 3080 (C-H str., Ar-H), 2976 (C-H str., CH_3), 1702, 1688 (C=O str.), 1627 (C=N str.), 1150 (C-F str.), 695 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 11.92 (s, 1H, isatin NH), 7.68-6.89 (m, 12H, Ar-H), 5.49 (dd, 1H, CH-Ar, J_1 = 5.7, J_2 = 11.3 Hz), 4.38 (dd, 1H, CHbH, J_1 = 17.8, J_2 = 11.3 Hz), 4.01 (s, 2H, CH_2), 3.59 (dd, 1H, CHHa, J_1 = 17.8, J_2 = 5.7 Hz), 3.22 (s, 3H, $COCH_3$).

3'-{4-(1-Acetyl-5-(4-methoxyphenyl)-2-pyrazoline-3-yl)phenyl}-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-diones 5c: IR (KBr, cm^{-1}): 3315 (N-H str.), 3074 (C-H str., Ar-H), 2981 (C-H str., CH_3), 1708, 1685 (C=O str.), 1624 (C=N str.), 1072 (C-O str.), 689 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 11.97 (s, 1H, isatin NH), 7.73-6.84 (m, 12H, Ar-H), 5.47 (dd, 1H, CH-Ar, J_1 = 5.7, J_2 = 11.3 Hz), 4.39 (dd, 1H, CHbH, J_1 = 17.8, J_2 = 11.3 Hz), 4.07 (s, 2H, CH_2), 3.90 (s, 3H, OCH_3), 3.61 (dd, 1H, CHHa, J_1 = 17.8, J_2 = 5.7 Hz), 3.16 (s, 3H, $COCH_3$).

3'-{4-(1-Acetyl-5-(4-nitrophenyl)-2-pyrazoline-3-yl)phenyl}-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-diones 5d: IR (KBr, cm^{-1}): 3312 (N-H str.), 3083 (C-H str., Ar-H), 2976 (C-H str., CH_3), 1705, 1688 (C=O str.), 1627 (C=N str.), 1540, 1346 (NO₂ asymm. and symm. str.), 682 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 11.94 (s, 1H, isatin NH), 7.70-6.89 (m, 12H, Ar-H), 5.47 (dd, 1H, CH-Ar, J_1 = 5.7, J_2 = 11.3 Hz), 4.40 (dd, 1H, CHbH, J_1 = 17.8, J_2 = 11.3 Hz), 4.14 (s, 2H, CH_2), 3.58 (dd, 1H, CHHa, J_1 = 17.8, J_2 = 5.7 Hz), 3.12 (s, 3H, $COCH_3$).

3'-{4-(1-Acetyl-5-phenyl-2-pyrazoline-3-yl)phenyl}-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-diones 5e: IR (KBr, cm^{-1}): 3305 (N-H str.), 3074 (C-H str., Ar-H), 2971 (C-H str., CH_3), 1709, 1682 (C=O str.), 1615 (C=N str.), 682 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 11.98 (s, 1H, isatin NH), 7.68-6.89 (m, 13H, Ar-H), 5.50 (dd, 1H, CH-Ar, J_1 = 5.7, J_2 = 11.3 Hz), 4.37 (dd, 1H, CHbH, J_1 = 17.8, J_2 = 11.3 Hz), 3.98 (s, 2H, CH_2), 3.60 (dd, 1H, CHHa, J_1 = 17.8, J_2 = 5.7 Hz).

Synthesis of 3'-{4-(1-acetyl-5-(4-chlorophenyl)-2-pyrazoline-3-yl)phenyl}-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-dione 6a: Compound **5a** (0.01 mole) was dissolved in 15 mL DMF and sodium hydride (0.01 mole) was added portion wise with constant stirring at 0-10 °C for 4 hr. Phthalimidoxy ethyl bromide (0.01 mole) was added to above mixture with constant stirring on a magnetic stirrer. Further the reaction-mixture was refluxed for 8-10 hr. Excess solvent was distilled off and the residual reaction-mixture was cooled and poured into ice-cold water. Solid obtained was recrystallized from ethanol.

IR (KBr, cm^{-1}): 3100 (C-H str., Ar-H), 2923 (C-H str., CH_3), 1713, 1687 (C=O str.), 1647 (C=N str.), 937 (N-O str.), 754 (C-Cl str.), 703 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 7.56-7.31 (m, 16H, Ar-H), 5.60 (dd, 1H, CH-Ar, J_1 = 5.4, J_2 = 11.6 Hz), 4.64 (t, 2H, OCH_2), 4.35 (dd, 1H, CHbH, J_1 = 17.5, J_2 = 11.6 Hz), 4.12 (s, 2H, S- CH_2), 3.50 (dd, 1H, CHHa, J_1 = 17.5, J_2 = 5.4 Hz), 3.12 (s, 3H, $COCH_3$), 2.93 (t, 2H, NCH_2); MS: *m/z* 705 [M]⁺, 707 [M+2]⁺, 677, 675, 663, 524, 221, 190, 162, 132.

Compounds **6b-e** were also synthesized by the similar method using appropriate reactants and minor modification in reaction conditions.

3'-{4-(1-Acetyl-5-(4-fluorophenyl)-2-pyrazoline-3-yl)phenyl}-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-dione 6b: IR (KBr, cm^{-1}): 3110 (C-H str., Ar-H), 2913 (C-H str., CH_3), 1705, 1683 (C=O str.), 1642 (C=N str.), 1190 (C-F str.), 932 (N-O str.), 710 (C-S-C str.); 1H NMR ($CDCl_3$, δ): 7.65-7.34 (m, 16H, Ar-H), 5.62 (dd, 1H, CH-Ar, J_1 = 5.4, J_2 = 11.6 Hz), 4.58 (t, 2H, OCH_2), 4.30 (dd, 1H, CHbH, J_1 = 17.5, J_2 = 11.6 Hz), 4.04 (s, 2H, S- CH_2), 3.48 (dd, 1H, CHHa, J_1 = 17.5, J_2 = 5.4 Hz), 3.08 (s, 3H, $COCH_3$), 2.89 (t, 2H, NCH_2); MS: *m/z* 689 [M]⁺, 661, 659, 647, 645, 524, 205, 190, 165, 132, 104.

3'-{4-(1-Acetyl-5-(4-methoxyphenyl)-2-pyrazoline-3-yl)phenyl}-1-N-ethoxyphthalimido-4'H-spiro-[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-dione 6c: IR (KBr, cm^{-1}): 3106 (C-H str., Ar-H), 2917 (C-H str., CH_3), 1707, 1685 (C=O str.), 1638 (C=N str.), 1080 (C-O str.), 935 (N-O str.), 703 (C-S-C str.); ^1H NMR (CDCl_3 , δ): 7.27-7.69 (m, 16H, Ar-H), 5.56 (dd, 1H, CH-Ar, $J_1 = 5.4$, $J_2 = 11.6$ Hz), 4.61 (t, 2H, OCH_2), 4.35 (dd, 1H, CHbH , $J_1 = 17.5$, $J_2 = 11.6$ Hz), 4.06 (s, 2H, S- CH_2), 3.48 (dd, 1H, CHHa , $J_1 = 17.5$, $J_2 = 5.4$ Hz), 3.18 (s, 3H, COCH_3), 2.90 (t, 2H, NCH_2); MS: m/z 701 [M] $^+$, 693, 671, 659, 524, 217, 162, 132, 104.

3'-{4-(1-Acetyl-5-(4-nitrophenyl)-2-pyrazoline-3-yl)phenyl}-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-dione 6d: IR (KBr, cm^{-1}): 3116 (C-H str., Ar-H), 2932 (C-H str., CH_3), 1701, 1682 (C=O str.), 1624 (C=N str.), 1527, 1356 (NO₂ asymm. and symm. str.), 935 (N-O str.), 700 (C-S-C str.); ^1H NMR (CDCl_3 , δ): 7.24-7.67 (m, 16H, Ar-H), 5.51 (dd, 1H, CH-Ar, $J_1 = 5.4$, $J_2 = 11.6$ Hz), 4.56 (t, 2H, OCH_2), 4.29 (dd, 1H, CHbH , $J_1 = 17.5$, $J_2 = 11.6$ Hz), 4.01 (s, 2H, S- CH_2), 3.43 (dd, 1H, CHHa , $J_1 = 17.5$, $J_2 = 5.4$ Hz), 3.11 (s, 3H, COCH_3), 2.91 (t, 2H, NCH_2); MS: m/z 716 [M] $^+$, 688, 686, 674, 524, 232, 192, 162, 132, 104.

3'-{4-(1-Acetyl-5-phenyl-2-pyrazoline-3-yl)phenyl}-1-N-ethoxyphthalimido-4'H-spiro[indole-3,2'-[1,3]thiazolidene]-2,4'-1H-dione 6e: IR (KBr, cm^{-1}): 3103 (C-H str., Ar-H), 2927 (C-H str., CH_3), 1704, 1684 (C=O str.), 1629 (C=N str.), 931 (N-O str.), 689 (C-S-C str.); ^1H NMR (CDCl_3 , δ): 7.21-7.64 (m, 16H, Ar-H), 5.53 (dd, 1H, CH-Ar, $J_1 = 5.4$, $J_2 = 11.6$ Hz), 4.62 (t, 2H, OCH_2), 4.33 (dd, 1H, CHbH , $J_1 = 17.5$, $J_2 = 11.6$ Hz), 4.01 (s, 2H, S- CH_2), 3.46 (dd, 1H, CHHa , $J_1 = 17.5$, $J_2 = 5.4$ Hz), 3.14 (s, 3H, COCH_3), 2.88 (t, 2H, NCH_2); MS: m/z 671 [M] $^+$, 643, 641, 629, 627, 524, 190, 187, 162, 147, 132, 104, 677, 675, 663, 524, 221, 190, 162, 132.

Acknowledgements

The authors are thankful to the Head, Department of Chemistry, M L Sukhadia University, Udaipur for providing laboratory facilities and to the Director, CDRI, Lucknow for providing spectral and analytical data. Two of the authors (DB and VKS) are thankful

to UGC and CSIR, New Delhi respectively for providing necessary financial assistance.

References

- 1 Turan Z G, Ozdemir A & Guven K, *Arch Pharm*, 338, **2005**, 96.
- 2 Santilli A A, Kim D H & Gregoy F J, *J Pharm Sci*, 64, **1975**, 1057.
- 3 Hes R V, Wellinga K & Grosscurt A C, *J Agric Food Chem*, 26, **1978**, 915.
- 4 Goyal R N & Jain R, *Anayltical and bioanalytical Chem*, 294, **1979**, 414.
- 5 Gursoy A, Demirayak S, Capan G, Erol K & Vural K, *Eur J Med Chem*, 35, **2000**, 359.
- 6 Varma R S & Khan I A, *Indian J Med Res*, 67, **1978**, 315.
- 7 Popp F D & Pajouhesh H J, *Pharm Sci*, 17, **1988**, 1052.
- 8 Bhattacharya S K & Chakraborti A, *Indian J Exp Biol*, 36, **1998**, 118.
- 9 Bhattacharya S K, *Biog Amines*, 14, **1988**, 131.
- 10 Protivinsky R, *Antibiot Chemother*, 17, **1971**, 101.
- 11 Varma R S, Pandey K R & Kumar P, *Indian J Pharm Sci*, 44 (6), **1982**, 132.
- 12 Heilmeyer L, *French Patent*, 1967, 5536; *Chem Abstr*, 71, **1969**, 423015.
- 13 Kobayashi G & Mastsuda Y, *Japan Pat*, 68, **1968**, 385; *Chem. Abstr*, 69, **1968**, 96716m.
- 14 Kikgawa K & Jehino S, *Chem Pharm Bull*, 21, **1973**, 1151.
- 15 Otomasu H, Natori K & Takahashi H, *Chem Pharm Bull*, 23, **1975**, 1431.
- 16 Barreca M L, Chimirri A, De Luca L, Monforte A M, Monforte P, Rao A, Zappala M, Balzarini J, De Clercq E, Panneccouque C & Witvrouw M, *Bioorg Med Chem Lett*, 11, **2001**, 1793.
- 17 Dandia A, Singh R, Khaturia S, Merienne C, Morgant G & Loupy G, *Chem Inform*, **2006**, 37.
- 18 Hrib N J, Jurcak J G, Bregna D E, Burgher K L, Hartman H B, Kafka S, Kerman L L, Kongsamut S, Roehr J E, Szewczak M R, Woods- Kettelberger A T & Corbett R, *J Med Chem*, 39, **1996**, 4044.
- 19 Gursoy A & Terzioglu N, *Turk J Chem*, 29, **2005**, 247.
- 20 Sharma R, Nagda D P & Talesara G L, *Arkivoc*, (i), **2006**, 1.
- 21 Banu T, Rajora S, Khatri D & Talesara G L, *J Indian Chem Soc*, 77, **2000**, 300.
- 22 Ure J & Perassalo M, *J Neuro Sci*, 1, **2000**, 177.
- 23 Singh B, Mehta D, Baredama L K & Talesara G L, *Indian J Chem*, 43B, **2004**, 1306.
- 24 Alexander M S, Stables J P, Rutkowska M C, Hurshthousu M B, Hibbs D E, Edafiogho I O, Farrar V A, Moore J A & Scott K R, *Eur J Med Chem*, 31, **1996**, 787.
- 25 Simmons A, *Practical Medical Microbiology*, 14th Edn, (Churchill Livingstone) Edinberg, 11, **1996**, 163.
- 26 Bauer L & Suresh K S, *J Org Chem*, 28, **1963**, 1604.
- 27 Mahmoud M R, *Indian J Chem*, 29B, **1990**, 830.